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Stability of Linear Systems'

e Stability will be defined in terms of ODE’s and OAFE ’s
— ODE: Couples System

du L
— = Ad-J©

— OAF : Matrix form from applying Eq. 1

Up+1 = C up — g,

— For Example: Euler Explicit C' = [I — hA]




Inherent Stability of ODE’SI

e Stability of Eq. 1 depends entirely on the eigensystem of A.

e )\,,-spectrum of A: function of finite-difference scheme, BC

For a stationary matrix A, Eq. 1 is inherently stable if,

when f is constant, u remains bounded as t — oo.

e Note that inherent stability depends only on the transient
solution of the ODE’s.

n - n -

(t) = cl(eAlh) :1:1+---—|—cm(e>‘mh) Ty + -
+ em (MM zy + PS. (4)




e ODE’s are inherently stable if and only if

R(Apm) <0 forall m (5)

e For inherent stability, all of the A\ eigenvalues must lie on, or to

the left of, the imaginary axis in the complex A\ plane.

e This criterion is satisfied for the model ODE’s representing both

diffusion and biconvection.




Numerical Stability of OAFE ’SI

Stability of Eq. 2 related to the eigensystem of its matrix, C.

om-spectrum of C': determined by the OAFE and are a function
of A\,

ﬁn = Cl(Ol)n £1+°"—|—Cm(0m>n £m+

-+ CM(OM)n CEM + P.S.

Spurious roots play a similar role in stability.

The OAFE companion to Statement 3 is

For a stationary matrix C, Eq. 2 is numerically stable

if, when ¢ is constant, u,, remains bounded as n — oc.




Definition of stability: referred to as asymptotic or time stability.

Time-marching method is numerically stable if and only if

[(0m),] <1 for all m and k (8)

This condition states that, for numerical stability, all of the o
eigenvalues (both principal and spurious, if there are any) must
lie on or inside the unit circle in the complex o-plane.

This definition of stability for OAE’s is consistent with the
stability definition for ODE’s.




Review '

— The PDE’s are converted to ODE’s by approximating the

e Our Approach leads to

space derivatives on a finite mesh.

— Inherent stability of the ODE’s is established by guaranteeing
that () < 0.

— Time-march methods are developed which guarantee that

lo(Ah)| < 1 and this is taken to be the condition for numerical
stability.




Time-Space Stability and Convergence of OAE’SI

e A more classical view (but consistent) in the time-space sense.
The homogeneous part of Eq. 2, t,+1 = Cu,
Applying simple recursion u, = C"u

Using vector and matrix p-norms

[@n]] = [|C™ || < |G| - Mldol] < [|CII™ - |0 (9)

Assume that the initial data vector is bounded, the solution

vector is bounded if
1C]] <1 (10)

where ||C]| represents any p-norm of C.




— This is often used as a sufficient condition for stability.

— Well known relation between spectral radii and matrix norms

x The spectral radius of a matrix is its Lo norm when the
matrix is normal, i.e., it commutes with its transpose.

x The spectral radius is the lower bound of all norms.

e The matrix norm approach and the o — X\ analysis are consistent

when both A and C' have a complete eigensystem.




Numerical Stability Concepts: Complex J-Planel

o-Root Traces Relative to the Unit Circle

The OAFE solution to the homogeneous part

Up = C1O07T1+ +F+ CnO Ty + -+ -+ CMO N T

Semi-discrete approach leads to a relation between the o and the

A eigenvalues.

Numerical stability of the OAFE requires that o-roots lie within

unit circle in the complex o-plane.

Trace the locus of the o-roots as a function of the parameter A\h




Stability in the Complex-oc Plane

A

e Define 0.4t = € and Separate:

— Dissipation (Ah = 8 < 0) —— Convection (Ah = iw)
e Plot Real(o) and Imag(o) for varying Ah of both types.

(o)

o (TN

R(0)

0=e)\h,)\h—>-oo O'=e|w,h(;.)h—>oo

a) Dissipation b) Convection

Figure 1: Exact traces of o-roots for model equations.




o — )\ Relations for Various Schemes

co—1—Xh =0 Explicit Euler

02 —2\ho —1=0 Leapfrog

o2 —(1+ 3xh)o + EAh =0 AB2

o3 — (1+ 23xn)o? + L8xho — ZAn =0 AB3

o1 —Ar)—1=0 Implicit Euler

c(1—4xn) -1+ 3xn)=0 Trapezoidal

0'2(1— %Ah)— %O’—F =0 2nd-Order
Backward

aj(l—%i;)—(l;)%AQh)a—l—ll%/\h:OS AMS3

o3 — (1+2Xh)o? + 3xho — TAh =0 Gazdag

o —1—xh —3x2r% =0 RK2

142,2 _ 143;3 1 y4,4 _
o%(1— $xh) — $2ho — (1 + $2R) =0 Milne 4th

1
3

Table 7.1. Some A — o Relations




Traces of o-roots for various methods.'
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A h=-2
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a) Euler Explicit

b) Leapfrog

o 01
- --CO0HO0e

Ah=-1

Diffusion Convection




Traces of o-roots for various methods.

d) Trapezoidal

e) Gazdag

Diffusion Convection




Types of Stability'

e Conditional Stability: Explicit Methods
OAFE ’s where \h < Constant
A spectrum, e.g. A\ph = — 4L (1 — cos(kAx) + isin(kAx))

Given Ax, wave speed a, and difference scheme: A fixed
Adjust h = At to satisfy stability bound
Time accuracy: use an appropriate h

Mildly-unstable: Prof. Milton VanDyke

Lock bike fork and peddle as fast as you can, you may cross

the street before you fall over and a truck hits you.




e Un-Conditional Stability: Implicit Methods

A numerical method is unconditionally stable if it is

stable for all ODE’s that are inherently stable.

OAFE ’s where \h — oo is stable
Time accuracy: use an appropriate h
Steady-State: any h which converges fast.

Computationally expensive compared with Explicit Methods




Stability Contours in the Complex A\h Plane.'

e Another view of stability properties of a time-marching method

is to plot the locus of the complex A\h for which |o| =1

e |o| refers to the maximum absolute value of any o, principal or

spurious, that is a root to the characteristic polynomial for a

given A\h.

e Inherently stable ODE’s lies in the left half complex-sigma plane




Example for Euler Explicitl

e Fuler explicit: g, = 1+ hA
— Wave equation: central differencing, \. = —ai%kfx)

h
Oee = 1 — Z—xisin(kAx)

— |oee| > 1.0 for all A, unconditionally unstable

e Wave equation: 1%¢ order backward differencing,
—ah (1 — cos(kAx) + isin(kAz))

— |oee| < 1.0 for all some h, conditionally stable

— Note: CFL = Z—Z,, CFL Number




e Complex M\-plane, Euler explcit, 0. = 1+ Ah
— Let Ah =2 + 1y, then e =1+ 2+ 1y

‘066’ = \/(1 + 37)2 + y?

— Contour of |oe.| = 0.8 leads to (1 + z)? + y? = (0.8)?: circle in
x, y centered at x = —1 with radius 0.8 , Stable

— Contour of |o.e| = 1.2 leads to (1 + z)? + y? = (1.2)?": circle
in x, y centered at x = —1 with radius 1.2, Un-Stable




Example for Euler Implicit'

e Euler implicit: 0¢; = 1= N

| . . - sin(kA
— Wave equation: central differencing, A\, = —a1 Sm(m» =

1
isin(kAx)

Oei

:1_|_ah

Ax
— |oei| < 1.0 for all A, unconditionally stable

— Even for Compex Ah: unconditional stability




e Complex A-plane, Euler Implcit, ¢; = 17—+

1—

Let A\h = x + 1y, then o,; = ﬁ
1

VI —2)? 4+

‘Uei| =

Contour of |o¢;| = 0.8 leads to (1 — z)? + y? = (55)?: circle in

x, y centered at x = 1 with radius ﬁ , Stable

Contour of |o.;| = 1.2 leads to (1 — z)? + y* = ({5)?: circle in

x, y centered at x = 1 with radius 1—12 < 1.0, Un-Stable

The unstable contours are in the right half of the inherent
stable of the ODE’s



Stable Unstable

— >

RIAh) R Ah) R Ah)

a) Euler Explicit § =0 b) Trapezoid Implicit 6 = 1/2 ¢) Euler Implicit 6=1

Figure 2: Stability contours for the #-method.
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Stability contours for Runge-Kutta methods.
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Fourier Stability Analysis'

Classical stability analysis for numerical schemes

Fourier or von Neumann approach.
— Periodic in space derivative, similar to modified wave number
— Usually carried out on point operators

— Does not depend on an intermediate stage of ODE’s.

Strictly speaking it applies only to difference approximations of
PDE’s that produce OAE’s

Serves as a fairly reliable necessary stability condition, but it is

by no means a sufficient one.




The Basic Procedure.

Impose a spatial harmonic as an initial value on the mesh
Will its amplitude grow or decay in time?

Determined by finding the conditions under which
u(z,t) = e . e (11)

Is a solution to the difference equation, where k is real and kAx
lies in the range 0 < kAx < .

For the general term,

u(n—i—e) a(t+LAL) ez'/{(a:—l—mAx) _ eocﬁAt _
J+m —

— &

IkmAT ugn)

u§-n> is common to every term and can be factored out.




Find the term e®?!, which we represent by o, thus:

o = e*At

n
eozAt) — g"

Since e®t = (

For numerical stability |o] <1 (12)

Solve for the ¢’s produced by any given method

A necessary condition for stability, make sure that, in the worst
possible combination of parameters, condition 12 is satisfied.




Example 1 I

e Finite-difference approximation to the model diffusion equation

e Richardson’s method of overlapping steps.

(n+1) _ (=1 2Bt () o () <n>
U U —|—I/Ax2( Uiy — 2u; tu ) (13)

— Substitution of Eq. 11 into Eq. 13

— 2At IKAX —i1KAZ
oO=0 1—|—VA$2(6 AT _ 9 1 ¢ A)

5 [4VAt
o” +

(1—COS/€A£€)] c—1=0

2b
. 11 is a solution of Eq. 13 if ¢ is a root of Eq. 14.




— The two roots of Eq. 14 are

01,2 = —bE+ Vb2 41

— One |o| is always > 1.

— Therefore, that by the Fourier stability test, Richardson’s

method of overlapping steps is unstable for all v, k and At.




Example 2 I

e Finite-difference approximation for the model biconvection

equation

Ujpr — Ujq

L) () aAt( (n) <n>)

J Y 2Ax
alt

o=1— — -7-sinkAzx

Ax

e |0| > 1 for all nonzero a and .

e Thus we have another finite-difference approximation that, by
the Fourier stability test, is unstable for any choice of the free

parameters.




